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ABSTRACT

In this paper, we investigate a coding scheme for error control in data communication
systems. The scheme is obtained by cascading two error-correcting codes, called the inner
and outer codes. The error performance of the scheme is analyzed for a binary symmetric
channel with bit-error rate € < 1/2. We show that, if the inner and outer codes are chosen
properly, extremely high reliability can be attained even for a high channel bit-error rate.
Various specific example schemes with inner codes ranging from high rates to very low
rates and Reed-Solomon codes as outer codes are considered, and their error probabilities
are evaluated. They all provide extremely high reliability even for very high bit-error rates.
say 107! to 1072. Several example schemes are being considered by NASA for satellite

and spacecraft down-link error control.
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1. INTRODUCTION

In this paper we present and analyze a coding scheme for error control for a binary
symmetric channel with bit-error rate ¢ < 1/2. The scheme is achieved by cascading two
linear block codes. called the inner and outer codes. The inner code, denoted Cy, is a
binary (ny. k1) code with minimum distance d;. It is designed to correct t; or fewer errors
and simultaneously detect A\j(A; > t;) or fewer errors where t; + A\; + 1 < d; [1-5]. The
outer code, denoted C;. is an (n3, k2) code with symbols from the Galois Field GF(2¢) and
minimum distance d,. If each code symbol of the outer code is represented by a binary (-
tuple based on a certain basis of GF(2!), then the outer code becomes an (ny¢, k2¢) linear
binary code. For the proposed coding scheme, we assume that the following conditions
hold:

k’] :'m][, (1)

and

ny = mymy, (2)

where m; and m, are two positive integers.

The encoding is performed in two stages as shown in Figures 1 and 2. First a message
of k»( binary information digits is divided into k, bytes of ¢ information bits each. Each (-
bit byte (or binary (-tuple) is regarded as a symbol in GF(2¢). These k; bytes are encoded
according to the outer code C; to form an ny-byte (n2( bits) codeword in (5. At the second
stage of encoding, the ny-byte codeword at the output of the outer code encoder is divided
into my segments of m; bytes (or m{bits) each. Each m;-byte segment is then encoded
according to the inner code C; to form an n;-bit codeword. This n,-bit codeword in
is called a frame. Thus, corresponding to a message of k;{-bits at the input of the outer
code encoder, the output of the inner code encoder is a sequence of m, frames of n, bits

each. This sequence of m; frames is called a block. The entire encoding operation results

in a binary (mgn;, k;{) linear code C whichis called a cascaded code. If m; =1 (i.e., each
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segment consists of a single £-bit byte), the cascaded code C becomes a concatenated code
[6]. A concatenated code with varying binary linear block inner codes can be regarded as
a cascaded code with n, = m; and m, = 1. Therefore, there exist cascaded codes which

asympotitically meet the Varshamov-Gilbert bound for all rates [7].

L

The decoding for the proposed scheme also consists of two stages as shown in Figures
1 and 3. The first stage is the inner code decoding. Depending on the number of errors in
a received frame, the inner code decoder performs one of the three following operations:

error-correction, erasure and leave-it-alone (LIA) operations. When a frame in a block 1s

received, its syndrome is computed based on the inner code C;. If the syndrome corre-
sponds to an error pattern € of ¢; or fewer errors, error correction is performed by adding
€ to the received frame. The ny — k; parity bits are removed from the decoded frame. and
the decoded m;-byte segment is stored in a receiver buffer for the second stage of decoding.

A successfully decoded segment is called a decoded segment with no mark. Note that a

decoded segment is error-free, if the number of transmission errors in a received frame is
t; or less. If the number of transmission errors in a received frame is more than A;. the
errors may result in a syndrome which corresponds to a correctable error pattern with ¢,
or fewer errors. In this case, the decoding will be successful, but the decoded frame (or
segment) contains undetected errors. If an uncorrectable error pattern is detected in a
received frame, the inner code decoder will perform one of the following two operations

based on a certain criterion (See Section 2.2):

1. Erasure Operation-The erroneous segment is erased. We will call such a segment an

erased segment. Note that this operation creates m; symbol erasures.

2. Leave-it-alone (LIA) Operation-The erroneous segment is stored in the receiver buffer

with a mark. Note that a marked segment may contain error-free symbols.




Whether the erasure operation or the LIA-operation is performed depends on the degree of
error contamination in the erroneous segment. Since the outer code C; has a fixed minimum
distance, it is desired to devise a strategy to choose between these two operations so that
the minimum distance of the outer code is used most effectively in correcting symbol
erasures and errors. A simple strategy may be devised based on the concepts of correcting
symbol erasures and errors [2-5]. For a code to be able to correct e or fewer symbol
erasures and f or fewer symbol errors, its minimum distance d is at least e + 2¢ + 1. This
implies that, to correct one symbol erasure, one unit of the minimum distance of the code
is needed. However, to correct a symbol error, two units of the minimum distance of
the code are needed. In the proposed scheme when an erasure operation is performed,
m; symbol erasures are created. To correct these m; symbol erasures, m; units of the
minimum distance of the outer code are needed. When a LIA-operation is performed,
the marked segment contains one to m; symbol errors. As a result, 2 to 2m; units of
the minimum distance of the outer code are required to correct these symbol errors. It is
clear that, to minimize the consumption of minimum distance of the outer code, we would
perform the LIA-operation when the number of symbol errors in an erroneous segment
is less than {m;/2] + 1, and perform the erasure operation when the number of symbol
eITors in an erroneous segment is greater than {m;/2|. Hence, we may use the following
strategy to choose between the erasure operation and the LIA-operation: If the probability
that an erroneous segment contains more than |m;/2] symbol errors is relatively small
compared to the probability that the erroneous segment contains |mj/2] or less symbol
errors, the LIA-operation is performed. Otherwise, the erasure operation is performed. The
joint probability distribution that a received frame is decoded successfully (or detected to
contain an uncorrectable error pattern) and the corresponding segment contains w symbol

errors is derived in Section 2.1 (or 2.2).

The inner code decoding described above consists of three operations: the error cor-




rection, the erasure and the LIA operations. An inner code decoding which performs

only the error-correction and erasure operations is called an erasure-only inner decoding.
On the other hand, an inner code decoding which performs only the error-correction and

LIA operations is called a LIA-only inner decoding. In this paper we mainly consider the

erasure-only inner decoding and the LIA-only inner decoding. Which of these two decod-
ings gives better performance will be discussed in Section 2.2. A combined erasure-and-LIA

inner decoding is discussed in Section 5.

As soon as m; frames in a received block have been processed, the second stage of
decoding begins and the outer code decoder starts to decode the m, segments which are
stored in the buffer. Symbol errors are contained in the segments with or without marks.
Each erased segment results in m; symbol erasures. The outer code C, and its decoder are
designed to correct the combinations of symbol erasures and symbol errors. Maximum-
distance-separable codes with symbol from GF(2¢) are most effective in correcting symbol

erasures and errors.

Now we describe outer code decoding process. Let i and h be the numbers of erased

segments and marked segments respectively. The outer code decoder declares an erasure

(or raises a flag) for the entire block of m; segments if either of the following two events

occurs:

(1) The number i is greater than a certain pre-designed threshold T., with T., <

(d2 - 1)/777,].

(ii) The number h is greater than a certain pre-designed threshold T. (1) with T(2) <

(d2 — 1 — my1)/2 for a given .

If none of the above two events occurs, the outer code decoder starts the error-correction

operation on the m; decoded segments. The m;: symbol erasures and the symbol errors




in the marked or unmarked segments are corrected based on the outer code C;. Let #;(2)

be the error-correction threshold for a given i where
Tee(z) < 12(2) <(dz — 1 — m1i)/2. (3)

If the syndrome of m, decoded segments in the buffer corresponds to an error pattern of
m;t erasures and 1(z) or fewer symbol errors, error-correction is performed. The values
of the erased symbols, and the values and the locations of symbol errors are determined
based on a certain algorithm. If more than ¢,(¢) symbol errors are detected, then the outer
code decoder again declares an erasure (or raises a flag) for the entire block of m, decoded

segments.

When a received block is detected in errors and can not be successfully decoded, the
block is erased from the receiver buffer and a retransmission for that block is requested.
However, if retransmission is either not possible or not practical and no block is allowed
to be discarded, then the erroneous block with all the parity symbols removed is accepted
by the user with alarm. An important feature of the proposed scheme is that a decoding
information of the inner code decoder is passed to the outer code decoder. This makes the

outer code decoding more eflicient.

In the rest of this paper, the error performance of the proposed cascaded coding scheme
1s analyzed. Interleaving the outer code is considered. We show that, if the inner and outer
codes are chosen properly, extremely high reliability can be attained even for high bit-error
rate, say ¢ = 1072, Various specific example schemes with inner codes ranging from high
rates to very low rates and Reed-Solomon codes as outer codes are considered, and their
error probabilities are evaluated. They all provide extremely high reliability. Several of
these specific schemes are being considered by NASA-GSFC for satellite and spacecraft..

down-link error control [8]
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2.  Probabilities of Correct Decoding, Incorrect Decoding and Decoding

Failure for a Frame

In this section, we analyze the inner code decoding. We assume that the channel
is a binary symmetric channel with bit-error rate ¢ < 1/2. Let P!Y be the probability
that a decoded segment is error-free. A decoded segment is error-free if and only if the

corresponding received frame contains t; or fewer errors. Thus

ty

n . .

P = V‘( _’) €(1 — )™, (4)
=0 !

Let P:C]) be the probability of an incorrect decoding for a frame. This is actually the

probability of an error pattern of A; + 1 or more errors whose syndrome corresponds to

a correctable error pattern of ¢; or fewer errors. Let P! be the probability of a frame

erasure, and let P:;) be the probability that a LIA operation is performed on a frame.

Let P!} be the probability that a decoded segment with or without mark contains errors.

Then
PV 4P L pd L p o, (5)
and
P =P)+ P} (6)

Note that P{! + P:C]) is the probability that a received frame is decoded successfully

correctly or incorrectly), and P!V + P'Y) represents the probability of a decoding failure.
¥ el P P \

Let .45-1) and B:” be the numbers of codewords of weight / in the inner code C; and
its dual code code Ci respectively. Let H”}")(n) denote the number of binary n-tuples with
weight j which are at a Hamming distance s from a given binary n-tuple with weight 1.

The generating function for W"J(_"'s)(n) 9] is

-3

Yo N wilmXiY =1+ X)X Y (7
J=0 =0




It was proved by MacWilliams [9] that

ni ny t)
PO PN =3 4 Y Wi (m)el (1 — )™, (8)
=27 Y B(1-2¢) P, (i -1, ny — 1) (9)
1=0

where r; = n; — k; is the number of parity-check bits of the inner code, and P,(-,-) is a

Krawtchouk polynomial {4. p. 129] whose generating function is

n

Y PG Y =(1+Y)T(1-Y) (10)

$s=0
. . (1) (1) . (1) (1)
Equations (8) and (9) are useful for computing P + P, " if a formula for A;"" or B,
is known, or min(k;, r1) is small enough (say less than 30) to be feasible to compute AE])

or B:l) by generating all the codewords in C; or Cj-.

Hereafter, we mainly consider the LIA-only inner decoding and the erasure-only inner
decoding (A combined inner decoding is discussed in section 5). For the LIA-only inner
decoding. the LIA-operation is performed whenever an uncorrectable error pattern in the
received frame is detected. In‘ this case, the frame erasure probability P!} is “zero.” For

the erasure-only inner decoding, it is obvious that P;:) =0.

It Pe(:) (or P,!,I)) is known, than Py (or P(:;)) and P!} can be computed from (4) to

(6) and (8) (or (9)).

2.1. DETAIL ERROR PROBABILITIES FOR A DECODED SEGMENT WITH NO
MARK

A successfully decoded segment may contain errors. For 0 < w < m,, let Pé,])w be
the joint probability that a segment is successfully decoded and the number of symbol (or
byte)errors in the decoded segment is w. It is clear that

1) _ ptl)
P; - P(—. 0
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and
my

pY=% PO (11)

e, w'
—1

To obtain the probability of a correct block decoding, we need to know P W for 0 < w < my.

. ) } . 1
In this section we will derive a formula for Pé’ )w.

For a binary n;-tuple ¢, we divide the first k; = m;£ bits into m,; (-bit bytes. For
1 < h < mjy, let iy be the weight of the h-th (-bit byte of . Let 7,,,41 be the weight of
the last »; = n; — k; bits. Then the (m; + 1)-tuple, (i1, 12, -*+,im,+1), 1s called the

weight structure of 7.

Suppose that a frame @ is transmitted and an error pattern € with weight structure

(71, J2s *** Jm,+1) occurs. The probability of occurence of € is
m1+l
P(e)=(1-&)™ ] (e/(1 - ep™. (12)
h=1

Suppose that there is a codeword ¢ in C; which is at a distance ¢; or less from €. Since
the minimum distance of C; is assumed to be greater than 2t;, such a codeword ¢ in Cy is
uniquely determined. Then the inner decoder assumes that the frame @ + t was sent, and
the error pattern € + ¢ occurred. The decoded segment is the first ky-bit of a ~¢. If v is a
nonzero codeword, the decoding is incorrect, and the first k;-bit of ¢ represent the errors
introduced by the inner code decoder. If there is no such codeword ¢ in Cy, then the inner
code decoder performs either the LIA-operation or the erasure-operation. Conversely, for

a codeword ¥ in C; whose weight structureis (¢y, t2, *++, ¢m,+1), there are
#(tn) ¢ -(1m1+1)
H Wi ] W s (1) (13)

error patterns €'s with Welght structure (J1. J2, ***, Jm,+1) such that the weight structure

. ] .
of © 4 &is (81, 82, --+. Sm,+1). Let 4£1)12, iy o1 be the number of codewords in C,

with weight structure (1,22, ,2m,+1). For 0 < w < my. let
Iy, = {(t1,02, -y imy41) @ 0<ip <flfor 1 <h<my, 0< i, 41 <1,y
and exactly w components of (i3, t2.---.i;,, ) are nonzero.}. (14)

9



Then, Pélu) is given below:

[4 ri

(1) __ \ (1) 2 : \" § -

Pe.u' - ] All lZu : »lml +1 L eed
(il‘i2v"'vim1+l)flw ]1—0 Jm, = =0 jmla»l:O

Wr(lm1+1) (7'1)

]"""1 +113m1+1

7(1 )

(81:82,8m  +1)€ S
1 1

(1-¢) [H (e/(1 —e))“} : (15)

where

S, = {(s1,82,- ", Smy41) ¢ 0<sp < forl1<h<my, 0< spm,+41 <1y

my+1
}and Z Sh §t1}. (16)

The formula given by (15) is useful if either (1) the dimension of Cy, kj, is small enough
(say k; < 30) to be feasible to compute the detail weight distribution, {A(l)zz‘ i, +1} y
generating all the codewords in Cj, or (2) the dimension of Cj-, r, is small enough to
be feasible to compute the detail weight distribution of Ci* and the number of elements
in I, 1s small enough to be feasible to enumerate all the elements in I, and compute

{4 } by using the generalized MacWilliams™ Identity [4].

11422, 0my 4

Next we will express the probability Pe w 1n terms of the detail weight distribution
of the dual code Ci of C;. Let H be a subset of {1,2,---,m;}. Let Pé”(H) be the
probability that for heH, the h-th £-bit byte of a decoded segment is error-free. Let H be

the complement of H in {1.2,---,m; + 1}. Define the following set:

I(H) = {({1,02, ++ yim,+1) : in =0for heH, 0 < iy < ¢ for heH — {m; + 1},

aIldOS iml+] ST’]}. (17)

Then, we have that

£ £ ™
(1) _ \ (1)
P(H) = L Ailvizs"'v‘imlﬂ z Z Z
(21,82, im, 41)el(H) n=0 Jm1 =0 Jm;4+1=0




7(tn) ¢ r(lm1+l)
Z [H v‘]hhsh :l V‘Jm”n 5m1+1(rl)

(81,82, ,8m +1)€5¢,;

(1-e)™ [H(e/(l—e))fh}, (18)
h=1
Define

Quli,n.m,y) = 7f(¢).&1unx (19)

Q:(i,n,m,v) Z S(1,m.m.y) (20)

s=0
It follows from (10) and (19) that
n+m
(1+7Y)"(1+Y)"" ZQunmv (21)
Let B::,)i,,---,im " be the number of codewords in C]l with weight structure (21,22, ,tm,+1)-
Then we have Lemma 1.
Lemma 1:
CSEERND WED Y S AN | (R
11=0 im im,+1=0 heH

M—JWQHQJWWJWMm#HﬂO, (22)

heH

where |H'! denotes the number of elements in H.

Proof: See Appendix A.

For 0 < s < my, let U, be the sum of P,f”(H) where H is taken over all the subsets

of {1,2,---,m;} with s elements. Define

Uslintzsoyimyenie) = ) hm—mﬂu—w
m }

HC{1,2,", heH
|Hl=2s
Q. (Zih.n] —€s, €s,e/(1 —6)) (23)
he H
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Then it follows from (22) and (23) that

£ [4 [4 ry
rr -r § § 2 ‘
l:/.! — 2 1
11:0 i2:0 im1:0 im1+1:0
B! Uy(iy,1 : : 24
12, yimy 1 5(2]’7'2a"'77m1+1 . 6)' ( )

In the sum U, error patterns with m; — s — 1 or less symbol (or byte) errors in a decoded
segment are counted more than once. In fact,
(1) s+ 1Y\ 5 (57 2) pm my (1)
[s_Peml—a+< 1 )Pe.ml—a—]_"—( 9 Pe,ml-s-—2+”.+ my — 8 Pe,O‘ (25)

Using the principle of inclusion and exclusion [10], we have that

P =) (-1) < " ) my—j+h- (26)
h=0
For 0 < 7 < m,, define
J .
o . my—-j+h o . -
Tj(l]712w"'7)'m1+l;f):Z(—‘l)h ( ' h] )l'fml-j+h(lla?'27"'7lm1+1;6)' (2‘)

h=0

Then it follows from (24) to (27) that we have

Theorem 1:

{ 4 4

P = ¥ Yo Z Z Bff,)i,,..-,.'mm Ti(i1,02, s imyt1i€).  (28)

11—0 12 =0 1 lml+1—0

VANRVAN

(1)

11,22, simg 41

It is feasible to obtain detail weight distribution {B, } by generating all
the codewords in Cj- for relatively small r;, say less than 30. Note that the number of
terms to be added in the right-hand side of (23) is (™), and therefore the number of
terms to be added or subtraced in the right-hand side of (27) is at most 2™!. For small
my, Tj(t1,72,*+yim,+1; €) can be easily computed and added for each codeword generated.

If the dual code of C'; contains the all-one vector, then Pé,lj) can be computed by generating

every codeword in the even-weight subcode and using

Tj(i].iz.--'.in,1+1;f) + Tj({— i].[—iz,'-'.rl —im1+]2€)

12



For £ = 1, the outer code is a binary code. In this case, the formula given by (28) is
not easy to evaluate since m, is relatively large. A simplified formula for £ = 1 has been

derived in [8].

2.2 Detailed Error Probability for a Marked Segment

In this section we will evaluate the probability of symbol errors in a marked segment.
Let Pe(;)u be the joint probability that a segment is marked and the number of erroneous

symbols in the marked segment is w. Then

el . w"

P =% P} (29)

w=1

In the following, we consider the LIA-only inner decoding. Define

For £ = 1, a simplified formula can be found in [8].

An important question is which provides better performance. “the LIA-only inner de-

coding,” or “the erasure-only inner decoding?” Lia-only inner decoding may be reasonable

only if
ma
w = Z Pé;‘)w < Pé:).
lmiy/2)+1
If

my
w = Z py <<1—P§])—Pi(cl),

el ,w
[mi1/2]+1

where Pe(;)w is computed under the assumption that the inner code decoding is a LIA-

only inner decoding. then a LIA-only inner decoding provides better performance than the

erasure- only inner decoding.

3. The Probabilitv of a Correct Block Decoding

13




In this section, we will evaluate the probability that a block of m; segments will be
decoded correctly by the outer code decoder. Let P.(j,m,h) denote the probability that
there are h segments with marks and j symbol errors in a set of consisting of m decoded

segments with or without marks. It follows from the definition of Pe(j,m,h) that

P.(j.1,0) =P, for 0 < j < my, (34)
P.(j.1,1) =P, for 0 < j < my (35)
Pe(j’la()) = Pe(j3171) :07 fOl‘j > my. (?’6)

and

min(j.m,}

P.(j.omk)= Y Pj—w,m-1,h) PO} + P(j —w,m - 1P (37)

el w*
w=10

From (34) to (37), Pe(j,m,h) can be computed readily.

The probability that, after the inner code decoding of a block of frames, there exist
| erased segments, h marked segments and j symbol errors in the marked and unmarked

(or decoded) segments is

(") [P2] Plirma — i) (38)

ra
Therefore, the probability of correct decoding of a block, denoted P, is given by
es m lTel(7) t2(i)
P. = 2 [ U)] .(j,m2 — i, h). :
¢ ( i ) Pes Z Z P(]3m2 7'7h) (39)
i=0 h=0  j=0
Let P., and P., denoted the probabilities of a block erasure and an incorrect decoding

respectively. Then

Pc+Pes+Per:1- (40)

It follows from definition that the following equality and bound hold:

Te, . Tel(') ng—mii
m 1
PotPu=Y ()PP §X X Plima-ih)
=0 h=0  j=t3(i)+1

14




m;—i

D S A T R

h=T.,(1)+1
S (™)) () (1)
i=T.,+1 ¢ '
T, iT”(” ny—myi
o<y ()P Y Y PGme-ih (42)
1=0 ! h=0 j=do—mji—t,(i)

The left-hand side of Eq.(41) provides an upperbound on the probability of a block erasure

(or decoding failure), and the left-hand side of (42) gives an upperbound on the probability

of an incorrect block decoding.

To the author’s knowledge, no feasible procedure for computing P,, or P., has been
derived except for the special case where the outer code is a binary code (£ = 1) used

only for error detection and n; — ky + n2 — k2 is small, say less than 25[11]. If the outer

code i1s used for both error correction and rows and k; columns are used as information
bits. The code array consists of n, frames and is transmitted row by row. As for the
decoding. after n; received frames have been decoded by the inner code decoder, the n,
decoded segments are arranged into an array as shown in Figure 5 which is called a decoded
segment-array. Note that an erased segment creates one symbol erasure in each section. A
decoded segment with or without mark may contain symbol erroré which are distributed
among the m; sections of a decoded segment-array, at most one symbol error in each
section. Therefore, each section in a decoded segment-array may contain symbol erasures
and errors. Now each section is decoded based on the outer code C,. Note that buffers

are needed to store code arrays at both trnsmitter and receiver.

For 1 < u < my, let p.(u) be the probability that the u-th symbol of a decoded
segment with no mark is erroneous. If the inner code Cy is quasi-cyclic by every s-bit shift

where s divides (, the p.(u) is independent of u. It follows from the definition that

15




Modifying the derivation of (31) or (33), we have that

£ [4 r
Peew)=1-(1-¢f =Y . N N al

1, =0 imlzo tmy+1=0
m,
. 17 (th) oy dni1 =Tk
> v e -]
J(u) 51, h=1
r('m +1) ‘m _ 'm
-w’jm111‘6m1+1(7’1)61 1+1(1—f)7'1 Jmy+1 (45)

[4 £ ry
ey =1-(1-ef -2 % ... 5 S B

i1:0 im1=0 im1+1=0
m;+1 ‘ . m;+1
JI 20" [1-(1 -1 -2 P, ( Y1, 1) . (46)
h=0 h=0

[See Appendix C for the derivation of (46)].

Since the outer code is interleaved by a depth of m,, the u-th symbol of every segment
is from the u-th section for 1 < u < my. Let Pc(u), pe,(u) and per(u) denote the
probabilities of a correct decoding, an erasure and an incorrect decoding for the u-th
section respectively. Then formulas or bounds for P.(u), P.,(u) and P..(u) can be derived

from those for P., P,, and P,, by the following replacement: m;7 — ¢, m; — n, and

Yy pe(j,mz-i,h)—»Z("’"h_i) };("Pi_h)( " )

s ] — 8
h J h J

ny—i-h-s
fpelu)]® [L =P = P~ pelu)]

- ) h—(js)
[peel) ™ [P = pedw)]
The restrictions on thresholds Te,, Te¢(t) and 5(¢) can be relaxed as follows:

T., <dy~1, Tooli) < (d2—1-1)/2  and  t3(i) < (d2 — 1 —i)/2.

Let P, be the probability of a correct decoding for all interleaved m; sections. Let P,, and
P,, be the probability that an incorrect decoding occurs for at least one of the interleaved

m; sections and that of a block erasure, respectively. Then

P., < max m]fjer(u), (47)

T 1<u<im,
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and

1'-—Pc:Per+Pes_<_ max ml(PeT(u)+Pes(.u))' (48)

1<u<m,

Let P.. + P., denote the right-hand side of (48).

Next we present a formula for P, and another upper bound on P,,. For simplicity,
we only consider the erasure-only inner decoding in which ¢2(¢) is independent of i and is

denoted t,.

For a binary m;-tuple (a — 1, az2,---,am,), let P,!']a)l‘...a

Ym

. denote the probability
that a segment is not erased and the u-th symbol of the decoding segment is error-free if
and only if a, = 0 in the inner code decoding. A computing procedure for Pe(,la)h...,am1 is

shown in Appendix D. For a positive integer n and integers j, with 1 < h < m; such that

0 <jn < n.let Pej j; - jn, () be defined by

n
z : (1) ra a »@my
my Peval 122,00 m ‘Xl ! ‘XZ e ‘Xml =
ai.az,am,)e{0,1}
n n n
YN Y Pignen, (n) XXX (49)

1=0 j2=0 j'm1:0

Then P.(=1- P., — P.,) is given by

Tel ts

t, t,
Pe=) (nzz) Yo D D Pesigieim (2= 1) (50)

= J1=0 j2=0  Jm, =0

-
<

It is feasible to compute P, for small m,, t; and relatively small min{k;, n, — k1}.

For1 < u < mj and ain GF(2%), let p.(u,a) be the probability that a segment is not
erased and the u-th error symbol of the decoded segment is a. A procedure for computing

Pelu,a) 1s stated in Appendix E. Then we have that

Pe(w)= Y pelu, a). (51)

Ay
aeGF(20)—{0}
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In Appendix F, the following upper bound on P, is derived.

i o iy Ny — l
P <) l. ) ¥ ( ; >
=0 w=dy—1 h=0
ng —1—Ww ad w o - . .
("7 X (Y) S Pwiwh, (52)
J=w+h—-1t, u=1

where
Plu.isw, by ) = [PO] (Be(w)] % [pefu, 0027

2¢-2

w—) . .
. [1 ‘P;:)] [pe(u’7q)]]+d2—l_uyv (53)

)
1l
=

where v is a primitive element of GF(2¢).
Let P., be defined as follows:

(1) For the case where the outer code is not interleaved, P., denotes the right-hand

side of (42), and

(2) for the case where the outer code is interleaved by a depth m; P., denotes the
right-hand side of (47), if an erasure-only inner decoding is used and t,(i) is

independent of 7 and otherwise, P., denotes the right-hand side of (52).

It follows from (42), (47) and (52) that
Per 2 Per-
For most cases of the example schemes considered in the next section, the right-hand side

of (52) is considerably tighter than that of (47).

5. Example Schemes

In the following we consider various specific example schemes using cascaded coding for

error control. In these example schemes, the inner codes range from high rates to very low
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rates, and the outer codes are Reed-Solomon (RS) (or a shortened RS) codes with symbols
from GF(2%). The outher code is either interleaved or not interleaved. The inner codes
with their parameters and generator polynomials are lised in descending order of the rates
in Table 1. The first three inner code, C;(1) to C'1(3) are shortened distance-4 Hamming
codes. The next three codes, C;(4) to C;(6) are obtained by shortening the even subcodes
of primitive BCH codes of length 63. The forth and fifth codes. C1(4) and Cy(5), can be
decoded with a table look-up decoding. The sixth code C(6) is majority-logic decodable
in two steps [1], and its decoder can be implemented easily. C;(7) is a quadruple-error
correcting Goppa code [12]. The eighth code is an extended primitive BCH code. In
fact, it is also a Reed-Muller code and is majority-logic decodable. C1(9) is the extended
(24,12) Golay code which is widely used for satellite and deep space communications.

C1(10), C41(12) and C4(13) are low-rate biothogonal codes (or first-order Reed-Muller

codes). C;(11) is a quadruple-error correcting one-step majority-logic decodable code [1].

For various combinations of code parameters and bit-error rates, the sum of the prob-
ability of a block erasure (decoding failure) and that of a decoding error, P., + P., [given
by (41) or (50)], and upper bound P.,. [defined in the previous section] on the probability of
a decoding error are given in Tables 2 to 5 and Figures 6 and 7. The degree of interleaving,
denoted I, is either 1 or m;. Thresholds, T.; and f,, which are independent of the number
of erased segments are considered here. The parameter, m T /Iq + 2t; + 1, 1s used as a

’

measure of the complexity of the outer code.

Symbol “E” (or “L”) shown in Tables 2 to 5 indicates that an erasure-only inner
decoding (or a LIA-only inner decoding) is used. For a comparison, we also consider a
combined erasure and LIA inner decoding where the LIA-operation is performed whenever
an uncorrectable error pattern whose weight is even (or odd) is detected in a received frame
for odd (or even) t;. In Table 2 symbol “E-L” indicates that the combined inner decoding

) . ) ) 1 1 .
is used. For the combined inner decoding, formulas for P:( ) P;t )u and per(u) are given
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in our NASA Technical Report [8]. In Table 2, the computation results for the combined
inner decoding are given only for the cases where either d; or mT.,/Iq+ 2t; + 1 is smaller

than for either the erasure-only inner decoding or the LIA-only inner decoding.

Example schemes shown in Table 2 are obtained as follows: Given the inner code
Cq(7) with 1 < <7, np =252 or 255, I3 =1 or m; and the type of inner code decoding,
the values of t;, T., and T.¢ are chosen to minimize mT.,/I; + I + 2t + 1 under the

condition that

Pes+Per(0rPes+Per) <10-]

for bit-error rate ¢ = 1072, and then the minimum value of d; is chosen to satisfy the

following condition

Perﬁo—lo

for ¢ = 1072. Only the example schemes with rates greater than 0.6 and d, < 33 are listed

in Table 2. In the column of P., + P., an entry marked “*” is given by the upper bound

of (48).

In Tables 3 to 5, P., + P., and P., are shown for cascaded coding schemes in which
the inner code is (y(7) with i < 7 < 13, the outer code is an interleaved RS code with a
depth of m;. and an erasure-only inner decoding is used. Parameters T,, and ¢, are chosen
to minimize the valued of P,, + P., for a certain bit-error rate ¢ under the restriction that

P.. <1071 for every bit-error rate ¢ listed in the Tables.

In Table 3 the outer code is the NASA Standard (255,223) RS code over GF(2%) and
the rates are greater than 0.6. For comparison, the case with no inner code is shown in the
first row. In Table 4 the rates are less than 0.6 and greater than 0.4, and example schemes
with lower rates are given in Table 5.

6.Conclusion



In this paper, we have investigated a cascaded coding scheme for error control. An
important feature of the scheme is that the decoding information of the inner code de-
coder is passed to the outer code decoder. This makes the outer code decoding more
effective. Error performance of the scheme is analyzed. If the inner and outer codes are
chosen properly, extremely high reliability can be achieved even for a high channel bit-error
rate. Many example schemes are being evaluated. Some high-rate example schemes are
being considered by NASA for satellite down-link error control, and being considered for

spacecraft down-link error control.

A major advantage of the proposed cascaded coding scheme, especially with interleav-

ing, i$ its robustness against unpredictable bursts.

This paper presents first serious effort in analyzing the error performance of a cascaded

coding scheme which include concatenated coding as a special case.
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